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Abstract
A class of completely integrable, and indeed solvable, Hamiltonian many-
body problems are exhibited, characterized by rotation-invariant Newtonian
equations of motion (‘acceleration equals force’), with linear and cubic forces,
in ordinary (three-dimensional) space. The corresponding Hamiltonians are of
normal type, with the kinetic energy quadratic in the canonical momenta and
the potential energy quadratic and quartic in the canonical coordinates.
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Mathematics Subject Classification: 58F07, 70F10

1. Introduction

Recently it has been noted [1–3] that the matrix evolution equation

M̈ = AM + MA + cM3 (1.1)

is integrable, and indeed solvable. Here M ≡ M(t) is a square matrix of arbitrary rank, A is
an arbitrary constant matrix (also square and with the same rank), c is an arbitrary ‘coupling
constant’ (which might, of course, be rescaled away) and dots denote differentiations with
respect to the independent variable t (‘time’). The integrability, and indeed solvability, of
this matrix evolution equation is demonstrated by recognizing [1–3] that it can be reduced to
(a special case of) the non-Abelian Toda lattice, the integrability, and indeed solvability (in
terms of hyperelliptic functions), of which was demonstrated some years ago by Krichever [4].
Recently it was also pointed out [1, 3, 5] that, via appropriate parametrizations of the matrix
M in terms of S-dimensional vectors, the matrix evolution equation (1.1) can be reformulated
as a set of coupled evolution second-order ODEs for S-vectors (and possibly, in addition,
for some scalars) which have the property of being rotation-invariant (indeed covariant) in
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S-dimensional space and are hence interpretable as the Newtonian equations of motion of
many-body problems characterized by linear and cubic forces. Moreover, since (1.1) can be
obtained from the Hamiltonian

H = trace[ 1
2 P 2 − MAM − (c/4)M4], (1.2)

where the (nm)-element Pnm of the matrix P ≡ P(t) is the canonically conjugated momentum
associated with the canonical variable Mmn (which is itself the (mn)-element of the matrix
M; note the exchange of the row–column indices!), all the Newtonian equations of motion
obtained in this manner are in fact obtainable from standard Hamiltonians which are the sum
of a ‘kinetic’ part quadratic in the momenta and a ‘potential’ part quadratic and quartic in the
coordinates.

Such quadratic and quartic oscillators are of great theoretical and applicative interest, hence
a search for such many-body models which are integrable has always attracted much interest
(see, for instance, [6] and the papers quoted therein). Of particular interest are such models
in ordinary (three-dimensional) space with rotation-invariant equations of motion. Indeed
much attention has recently been focused on the derivation from (1.1) of just such models
via appropriate parametrizations of the matrix M in terms of 3-vectors (and possibly also of
scalars), parametrizations which have the property of being compatible with the evolution
equation (1.1) and transforming it into a system of covariant scalar and 3-vector coupled
second-order ODEs of Newtonian type [1, 3, 5].

The purpose and scope of this paper is to add to this body of knowledge by introducing
an additional convenient parametrization of the matrix M , based on the algebra of the four
anticommuting γ -matrices of rank 4 familiar from relativistic quantum mechanics.

In section 2 the matrix evolution equation (1.1) is rewritten in a form which is convenient
for treating many-body models, and some basic properties of the representation of (4 × 4)-
matrices in terms of 3-vectors and scalars, introduced via the four anticommuting γ matrices
and their products, are reported. Our main results are then derived and displayed in section 3.
Some final remarks are given in section 4.

2. Parametrization of (4 × 4)-matrices via 3-vectors and scalars

As a preliminary to using the matrix evolution equation (1.1) to generate evolution equations
for several 3-vectors and scalars we rewrite it as follows:

M̈(nm) =
N∑
l=1

[A(nl) M(lm) + M(nl) A(lm)] + c

N∑
l,k=1

M(nl) M(lk) M(km). (2.1)

Here and below the indices n,m take the values 1, 2, . . . , N , and the N 2 evolving matrices
M(nm) ≡ M(nm)(t), as well as the N 2 constant matrices A(nm), are all (4 × 4)-matrices.
Obviously this system of N 2 coupled matrix evolution equations is completely equivalent to
(1.1) via the following ‘block’ representation of the ((4N) × (4N))-matrices M and A:

M =

 M(11) . . . M(1N)

...
. . .

...

M(N1) · · · M(NN)


 , A =


 A(11) . . . A(1N)

...
. . .

...

A(N1) · · · A(NN)


 . (2.2)

Then let the four (4 × 4)-matrices γµ, µ = 0, 1, 2, 3 be characterized by the
anticommutation rules

γµ γν + γν γµ = 2 I δµν. (2.3)

Here and in what follows Greek indices such as µ, ν take the four values 0, 1, 2, 3 unless
otherwise indicated, and I is the unit (4×4)-matrix. It is then well known (and easily verified)



Integrable systems of quartic oscillators in ordinary (three-dimensional) space 3093

that a convenient basis for (4 × 4)-matrices is provided by the following set of 16 (4 × 4)-
matrices:

�S = I, �P = γ5, �V
µ = γµ,

�A
µ = γ5 γµ, �T

µν = σµν, µ, ν = 0, 1, 2, 3.
(2.4a)

The γ5 and σµν matrices are defined in terms of the four matrices γµ as follows:

γ5 = γ0 γ1 γ2 γ3, (2.4b)

σµν = 1
2 (γµγν − γνγµ), µ �= ν, µ, ν = 0, 1, 2, 3. (2.4c)

The standard characterization of these 16 matrices in the context of relativistic quantum
mechanics associates them with a scalar (�S), a pseudoscalar (�P ), a 4-vector (�V

µ ), an axial
4-vector (�A

µ ) and an antisymmetric tensor (�T
µν), accounting respectively, for one, one, four,

four and six components (1 + 1 + 4 + 4 + 6 = 16). In the context of interest to us, the 16 basic
matrices are rather associated with four scalars and four 3-vectors (4 + 4×3 = 4 + 12 = 16),
corresponding to the following parametrization of a generic (4 × 4)-matrix M in terms of the
four scalars ρ(j) and the four 3-vectors �r(j) ≡ (x(j), y(j), z(j)):

M =
4∑

j=1

ρ(j) E(j) +
4∑

j=1

�r(j) · �E(j). (2.5)

Here the 16 (4 × 4)-matrices of type E are defined as follows in terms of the original four
γ -matrices:

E(1) = γ5, E(2) = I, E(3) = γ5γ0, E(4) = γ0,

�E(1) = (γ5γ1, γ5γ2, γ5γ3), �E(2) = (γ1, γ2, γ3),

�E(3) = (γ2γ3, γ3γ1, γ1γ2), �E(4) = (γ0γ1, γ0γ2, γ0γ3).

(2.6)

Here and in what follows a dot sandwiched between two 3-vectors denotes the standard scalar
product, while a wedge will denote the standard vector product, for instance

�r(1) · �r(2) ≡ x(1)x(2) + y(1)y(2) + z(1)z(2), (2.7a)

�r(1) ∧ �r(2) ≡ (y(1)z(2) − z(1)y(2), z(1)x(2) − x(1)z(2), x(1)y(2) − y(1)x(2)). (2.7b)

For our purposes the crucial property of the parametrization (2.5) is the fact that it is
preserved under (matrix) multiplication, in the following sense: if the two (4 × 4)-matrices
M(A), M(B) are parametrized according to (2.5),

M(C) =
4∑

j=1

ρ(C)(j) E(j) +
4∑

j=1

�r(C)(j) · �E(j), C = A,B, (2.8)

then their (matrix) product,

M(AB) = M(A) M(B), (2.9)

features (of course) a similar parametrization,

M(AB) =
4∑

j=1

ρ(AB)(j) E(j) +
4∑

j=1

�r(AB)(j) · �E(j), (2.10)

with the four scalars ρ(AB)(j) and the four 3-vectors �r(AB)(j) ≡ (x(AB)(j), y(AB)(j), z(AB)(j))

given in terms of the eight scalars ρ(C) (k) and the eight 3-vectors �r(C) (k) ≡
(x(C) (k), y(C) (k), z(C) (k)), C = A,B, k = 1, 2, 3, 4, by the following covariant formulae:
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ρ(AB)(j) =
4∑

k,l=1

s
(j)

kl ρ(A)(k) ρ(B)(l) +
4∑

k,l=1

ŝ
(j)

kl �r(A)(k) · �r(B)(l), j = 1, 2, 3, 4, (2.11a)

�r(AB)(j) =
4∑

k,l=1

u
(j)

kl ρ(A)(k) �r(B)(l) +
4∑

k,l=1

û
(j)

kl �r(A)(k) ρ(B)(l)

+
4∑

k,l=1

w
(j)

kl �r(A)(k) ∧ �r(B)(l), j = 1, 2, 3, 4. (2.11b)

By s
(j)

kl , ŝ
(j)

kl , u
(j)

kl , û
(j)

kl , w
(j)

kl , j = 1, 2, 3, 4, we mean the (kl)-element (kth row, lth column) of
the following 20 specific (4 × 4)-matrices:

s(1) =




0 1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0


 , s(2) =




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1


 ,

s(3) =




0 0 0 1
0 0 1 0
0 1 0 0

−1 0 0 0


 , s(4) =




0 0 1 0
0 0 0 1

−1 0 0 0
0 1 0 0




(2.12a)

ŝ(1) =




0 1 0 0
−1 0 0 0

0 0 0 1
0 0 1 0


 , ŝ(2) =




−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


 ,

ŝ(3) =




0 0 0 −1
0 0 −1 0
0 −1 0 0
1 0 0 0


 , ŝ(4) =




0 0 −1 0
0 0 0 −1

−1 0 0 0
0 1 0 0




(2.12b)

u(1) =




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


 , u(2) =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 ,

u(3) =




0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0


 , u(4) =




0 0 −1 0
0 0 0 1

−1 0 0 0
0 1 0 0




(2.12c)

û(1) =




0 1 0 0
−1 0 0 0

0 0 0 1
0 0 −1 0


 , û(2) =




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


 ,

û(3) =




0 0 0 1
0 0 −1 0
0 1 0 0

−1 0 0 0


 , û(4) =




0 0 1 0
0 0 0 −1

−1 0 0 0
0 1 0 0




(2.12d)
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w(1) =




0 0 −1 0
0 0 0 −1

−1 0 0 0
0 1 0 0


 , w(2) =




0 0 0 −1
0 0 −1 0
0 −1 0 0
1 0 0 0


 ,

w(3) =




−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


 , w(4) =




0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0


 .

(2.12e)

These 20 matrices could be written in more compact form in various ways, utilizing their
simple block structure (half of them are block-diagonal, half of them block-antidiagonal,
with the (2 × 2)-matrices that constitute them being themselves diagonal or antidiagonal);
but we believe it is more transparent to exhibit them in fully explicit form. Note that they
are all rather sparse, each of them having 12 vanishing elements and only four nonvanishing
ones, equal to positive or negative unity. They are, of course, not independent, for instance
s(3) = −ŝ(3), u(3) = −û(3), w(4) = −ŝ(1) and ŝ(j) = w(5−j), j = 2, 3, 4. All the 12
matrices of type s, ŝ, w have determinant −1, while all the eight matrices of type u, û have
determinant +1.

Let us re-emphasize that the crucial property here is the covariant character of formulae
(2.11), entailing their rotation-invariance. It is because of this property that the use of
this parametrization transforms the matrix evolution equation (2.1) into a rotation-invariant
system of evolution equations of Newtonian type for scalars and 3-vectors, as displayed in the
following section.

Finally let us note that, in the above discussion, we have not made any distinction between
scalar and pseudoscalar quantities, nor between vectors and pseudovectors (namely, between
ordinary and axial 3-vectors)—namely, no distinction between quantities that behave in the
same manner under rotation in three-dimensional space, but behave differently under reflections
(or parity transformations). It is clear that, if such a distinction were instead introduced, one
would conclude that ρ(2) and ρ(4) are scalars, whileρ(1) and ρ(3) are pseudoscalars, and
likewise that �r(2) and �r(4) are vectors while �r(1) and �r(3) are pseudovectors (or, equivalently,
axial vectors). And it is easy to verify, using the explicit form of the matrices (2.12), that
this distinction is also preserved by formulae (2.11), namely that these formulae are invariant
not only under (three-dimensional) rotations, but also under the parity (or space inversion)
transformation.

3. Results

In this section we display the main results of this paper, which are an immediate consequence
of the application of the parametrization introduced in section 2 (see (2.5), and especially
(2.11)) to the matrix evolution equations (2.1). Hence these equations obtain from (2.1) by
introducing the parametrization (2.5) for the (evolving) (4 × 4)-matrices M(nm) ≡ M(nm)(t),

M(nm)(t) =
4∑

j=1

ρ(nm) (j)(t) E(j) +
4∑

j=1

�r(nm) (j)(t) · �E(j), (3.1a)

of course with an analogous parametrization for the constant (4 × 4)-matrices A(nm),

A(nm) =
4∑

j=1

α(nm) (j) E(j) +
4∑

j=1

�a(nm) (j) · �E(j). (3.1b)

We thereby obtain the following Newtonian equations of motion:
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ρ̈(nm)(j) =
N∑
l=1

4∑
h,k=1

[s(j)hk (α
(nl)(h)ρ(lm)(k) + ρ(nl)(h)α(lm)(k))

+ ŝ
(j)

hk (�a(nl)(h) · �r(lm)(k) + �r(nl)(h) · �a(lm)(k))]

+ c

N∑
l,p=1

4∑
h,k=1

4∑
q,v=1

[s(j)hk (s
(h)
qv ρ

(nl)(q)ρ(lp)(v) + ŝ(h)qv �r(nl)(q) · �r(lp)(v))ρ(pm)(k)

+ ŝ
(j)

hk (u
(h)
qv ρ

(nl)(q)�r(lp)(v) + û(h)
qv �r(nl)(q)ρ(lp)(v)

+ w(h)
qv �r(nl)(q) ∧ �r(lp)(v)) · �r(pm)(k)], (3.2a)

�̈r(nm)(j) =
N∑
l=1

4∑
h,k=1

[u(j)

hk (α
(nl)(h)�r(lm)(k) + ρ(nl)(h)�a(lm)(k)) + û

(j)

hk (�a(nl)(h)ρ(lm)(k)

+ �r(nl)(h)α(lm)(k)) + w
(j)

hk (�a(nl)(h) ∧ �r(lm)(k) + �r(nl)(h) ∧ �a(lm)(k))]

+ c

N∑
l,p=1

4∑
h,k=1

4∑
q,v=1

[u(j)

hk (s
(h)
qv ρ

(nl)(q)ρ(lp)(v) + ŝ(h)qv �r(nl)(q) · �r(lp)(v))�r(pm)(k)

+ û
(j)

hk (u
(h)
qv ρ

(nl)(q)�r(lp)(v) + û(h)
qv �r(nl)(q)ρ(lp)(v) + w(h)

qv �r(nl)(q) ∧ �r(lp)(v))ρ(pm)(k)

+ w
(j)

hk (u
(h)
qv ρ

(nl)(q)�r(lp)(v) + û(h)
qv �r(nl)(q)ρ(lp)(v)

+w(h)
qv �r(nl)(q) ∧ �r(lp)(v)) ∧ �r(pm)(k)]. (3.2b)

These Newtonian equations of motion involve the 4N2 scalars ρ(nm) (j) ≡ ρ(nm) (j)(t)

and the 4N2 3-vectors �r(nm) (j) ≡ �r(nm) (j)(t); they feature the 4N2 arbitrary scalar constants
α(nm) (j) and the 4N2 arbitrary constant 3-vectors �a(nm) (j); they are clearly covariant, hence they
describe a rotation-invariant dynamics provided the 4N2 constant 3-vectors �a(nm) (j) (which
would otherwise identify privileged directions) are all set to zero. It is also easily seen from
the structure of the matrices (2.12) (see the last remark at the end of the preceding section)
that for j = 1, 3 all (nonvanishing) terms in the right-hand side of (3.2a) are pseudoscalars
while for j = 2, 4 all (nonvanishing) terms in the right-hand side of (3.2a) are scalars (i.e. not
pseudoscalars), and likewise that for j = 1, 3 all (nonvanishing) terms in the right-hand side
of (3.2b) are pseudovectors while for j = 2, 4 all (nonvanishing) terms in the right-hand side
of (3.2b) are vectors (i.e. not pseudovectors), so that these Newtonian evolution equations,
(3.2), preserve parity (provided, of course, the constant quantities α(nm) (j) and �a(nm) (j) are
assumed to behave appropriately under parity; if one insists that they are just constants, then
the Newtonian equations of motion (3.2) will be invariant under both rotations and inversions
iff all the constants 3-vectors �a(nm) (j) vanish and moreover, the constants α(nm) (j) also all
vanish for j odd, α(nm) (1) = α(nm) (3) = 0).

As already mentioned above, these Newtonian equations of motion (3.2) are Hamiltonian.
The Hamiltonian function H that yields them via the standard Hamiltonian equations,

ρ̇(nm) (j) = ∂H/∂π(nm) (j), π̇ (nm) (j) = −∂H/∂ρ(nm) (j), (3.3a)

�̇r(nm) (j) = ∂H/∂ �p(nm) (j), �̇p(nm) (j) = −∂H/∂�r(nm) (j), (3.3b)

is easily obtained by inserting in (1.2) the parametrizations (2.2) and (3.1) of M and A, as well
as the analogous parametrization of P :

P =

 P (11) . . . P (1N)

...
. . .

...

P (N1) · · · P (NN)


 , (3.4a)
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P (nm)(t) =
4∑

j=1

π(nm) (j)(t) E(j) +
4∑

j=1

�p(nm) (j)(t) · �E(j) (3.4b)

(and by dividing by 4, to compensate for the fact that trace [I ] = 4 when I is the 4 × 4 unit
matrix). It reads

H =
N∑

j=1

{
1

2

N∑
l=1

4∑
h,k=1

(s
(2)
hk π

(jl)(h)π(lj)(k) + ŝ
(2)
hk �p(jl)(h) · �p(lj)(k))

−
N∑

l,p=1

4∑
h,k=1

4∑
q,v=1

[s(2)hk (s
(h)
qv ρ

(jl)(q)α(lp)(v) + ŝ(h)qv �r(j l)(q) · �a(lp)(v))ρ(pj)(k)

+ ŝ
(2)
hk (u

(h)
qv ρ

(jl)(q)�a(lp)(v) + û(h)
qv �r(j l)(q)α(lp)(v) + w(h)

qv �r(j l)(q) ∧ �a(lp)(v)) · �r(pj)(k)]

− c

4

N∑
l,p,i=1

4∑
h,k=1

{
s
(2)
hk

4∑
m,n=1

4∑
q,v=1

[s(h)mn(s
(m)
qv ρ(jl)(q)ρ(lp)(v)

+ ŝ(m)
qv �r(j l)(q) · �r(lp)(v))ρ(pi)(n) + ŝ(h)mn(u

(m)
qv ρ(jl)(q)�r(lp)(v)

+ û(m)
qv �r(j l)(q)ρ(lp)(v) + w(m)

qv �r(j l)(q) ∧ �r(lp)(v)) · �r(pi)(n)]ρ(ij)(k)

+ ŝ
(2)
hk

4∑
m,n=1

4∑
q,v=1

[u(h)
mn(s

(m)
qv ρ(jl)(q)ρ(lp)(v) + ŝ(m)

qv �r(j l)(q) · �r(lp)(v)) · �r(pi)(n)

+ û(h)
mn(u

(m)
qv ρ(jl)(q)�r(lp)(v) + û(m)

qv �r(j l)(q)ρ(lp)(v) + w(m)
qv �r(j l)(q) ∧ �r(lp)(v))ρ(pi)(n)

+ w(h)
mn(u

(m)
qv ρ(jl)(q)�r(lp)(v) + û(m)

qv �r(j l)(q)ρ(lp)(v)

+ w(m)
qv �r(j l)(q) ∧ �r(lp)(v)) ∧ �r(pi)(n)] · �r(ij)(k)

}}
. (3.5)

4. Outlook

In this paper we have identified a Hamiltonian system of linear and cubic oscillators, the linear
part of which contains many arbitrary coupling constants, hence it includes many subcases.
The integrability, and indeed solvability, of these equations of motion is implied by the fact
that this system is an appropriate reduction of the matrix evolution equation (1.1), which is
itself integrable, and indeed solvable [1–4]. A detailed analysis of the behaviour of these
systems of unharmonic oscillators, as well as their utilization in applicative contexts, remains
an interesting task for future work. A related interesting problem is whether to the classical
integrability, and indeed solvability, of these and analogous [5] systems, there also corresponds
some special property in the quantal context.
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